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Abstract. The Pearl River Delta (PRD) is a densely populated hub of industrial activity located in southern China. OMI satellite

observations reveal a large hotspot of glyoxal (CHOCHO) over the PRD that is almost twice as large as any other in Asia.

Formaldehyde (HCHO) and NO2 observed by OMI are also high in the PRD but no more than in other urban/industrial areas

of China. The CHOCHO hotspot in the PRD can be explained by industrial paint and solvent emissions of aromatic volatile

organic compounds (VOCs), with toluene being a dominant contributor. By contrast, HCHO in the PRD originates mostly from5

VOCs emitted by combustion (principally vehicles). By applying a plume transport model to wind-segregated OMI data, we

show that the CHOCHO and HCHO enhancements over the PRD observed by OMI are consistent with current VOC emission

inventories. Prior work using CHOCHO retrievals from the SCIAMACHY satellite instrument suggested that aromatic VOC

emissions in the PRD were too low by a factor of 10-20; we attribute this result in part to bias in the SCIAMACHY data

and in part to underestimated CHOCHO yields from oxidation of aromatics. Our work points to the importance of better10

understanding CHOCHO yields from the oxidation of aromatics in order to interpret CHOCHO observations from space.

1 Introduction

The Pearl River Delta (PRD) is a metropolis of nine cities on the southern coast of China with 57 million people as of 2013.

Rapid economic growth over the past three decades has created a serious air quality problem within the region, with ozone

(O3) and particulate matter (PM) air quality standards frequently violated. Volatile organic compounds (VOCs) are important15

O3 and PM precursors. Our recent retrieval of atmospheric glyoxal (CHOCHO) from the OMI satellite instrument, including

a number of corrections to previous retrievals, finds the CHOCHO column concentrations over the PRD to be the highest in

the world (Chan Miller et al., 2014). Here we investigate the sources of CHOCHO in the PRD, their representation in current

VOC emission inventories used by atmospheric models.

The PRD has undergone rapid industrialization since 1980 when a series of economic reforms reduced restrictions on20

foreign investment. The PRD is now referred to as the "World Factory", producing 25% of China’s exports (Guangdong
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Statistical Yearbook, 2010). Major industries include printing, oil refining, chemical production, and automobile and electronics

manufacturing (Zhong et al., 2013).

This industrialisation has led to worsening air quality throughout the region. Surface O3 and PM are routinely in excess of

the Chinese national ambient air quality standards (NAAQS) of 81.5 ppbv for O3 and 35 µg m−3 for PM2.5 (MEP, 2012).

Ozone production in the PRD is predominantly VOC-limited (Zhang et al., 2007, 2008; Wang et al., 2010; Shao et al., 2009;5

Xue et al., 2014), and the aromatic species toluene and xylene play a dominant role (Xue et al., 2014). Aromatics have also

been identified as an important regional source of secondary organic aerosol via reactive uptake of their oxidation products (Li

et al., 2013).

CHOCHO is a high-yield product of aromatic oxidation (Nishino et al., 2010), thereby making satellite CHOCHO observa-

tions a valuable proxy for their emission. Previous satellite observations have suggested that inventories underestimate aromatic10

emissions over China. Stavrakou et al. (2009) used 2005 observations of CHOCHO and HCHO from the SCIAMACHY satel-

lite instrument and found the global RETRO VOC inventory (Maarten van het Bolscher, 2007) to be too low in the PRD by

over a factor of 2. Liu et al. (2012) used 2007 SCIAMACHY CHOCHO observations and found the INTEX-B East Asian

inventory (Zhang et al., 2009) underestimated emissions in the PRD by 10 - 20-fold.

Our OMI CHOCHO retrieval is systematically lower than the older SCIAMACHY data, with very different patterns, as a15

result of improved background corrections and removal of NO2 interferences (Chan Miller et al., 2014). Another recent OMI

retrieval (Alvarado et al., 2014) is also systematically lower than SCIAMACHY. This calls for revisiting the interpretation of

CHOCHO data from space. Focus on the PRD not only targets a hotspot in the OMI data, but enables comparison to a highly

detailed local VOC inventory for the region (Zheng et al., 2009a, b).

2 Data and Methods20

The Ozone Monitoring Instrument (OMI) was launched onboard the NASA Aura satellite in July 2004 (Levelt et al., 2006).

Aura is in sun-synchronous orbit with an equatorial crossing time of 13:38 local. OMI measures backscattered solar radiation at

a nadir spatial resolution of 13km×24km and achieves daily global coverage by cross-track imaging. Spectral fitting yields slant

columns of CHOCHO, HCHO and NO2 along the optical path. These are converted to vertical columns using air mass factors

(AMFs) that combine scattering weights and vertical concentration profiles (González Abad et al., 2015). We use CHOCHO25

data from Chan Miller et al. (2014), and HCHO and NO2 data from the OMI Version 3 product release (González Abad et al.,

2015; Bucsela et al., 2013). Vertical profiles for the AMF computation are from the GEOS-Chem chemical transport model

(v9-01-3; http://geos-chem.org). GEOS-Chem was originally described by Bey et al. (2001) and the glyoxal simulation was

first introduced by Fu et al. (2008). The general chemical mechanism in v9-01-3 is described in Mao et al. (2013).

Observations are averaged on a 0.25◦×0.3125◦ grid using an area-weighted tessellation algorithm (Spurr, 2004). We exclude30

observations from the first and last cross track positions, those that fail the retrieval algorithm statistical quality checks, and

those impacted by the row anomaly (http://www.knmi.nl/omi/research/product/rowanomaly-background.php). Validation with

aircraft data indicates that the OMI HCHO and NO2 retrievals are accurate within 20% and 30% respectively (Lamsal et al.,
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2014; Zhu et al., 2015). CHOCHO/HCHO column ratios from OMI are consistent with aircraft observations (Kaiser et al.,

2015), whereas previous SCIAMACHY retrievals showed large discrepancies (DiGangi et al., 2012).

We relate the CHOCHO and HCHO satellite observations over the PRD to VOC emissions using a 1-D advective-reactive

plume model (Beirle et al., 2011; Valin et al., 2013), assuming a constant wind u, and treating the PRD as a Gaussian-distributed

source (N(x;σ)) orthogonal to the wind with total emission rate Ei (e.g. mol s−1). Let li represent the vertical column density5

of VOC species i integrated in the horizontal orthogonally to the wind (molecules cm−1). The continuity equation is written;

∂li(x,t)
∂t

+u
∂li(x,t)
∂x

= Ei(t)N(x;σ)− ki[OH](t)li(x,t) (1)

Here ki is the rate constant of the reaction of VOC i with the hydroxyl radical OH (the main sink for the VOCs of interest).

The local diurnally-varying concentration of OH is calculated from GEOS-Chem and peaks at 1.5× 107 molecules cm−3 at

local noon, close to observed values in the PRD (Hofzumahaus et al., 2009). Ei varies diurnally using source scaling factors10

from GEOS-Chem (van Donkelaar et al., 2008). We use the NO2 plume as a proxy to derive the along-trajectory width of the

VOC source region (σ), using the exponential decay model from Beirle et al. (2011). The derived half-maximum width (∼ 85

km ) is reasonable given the observed extent of PRD urban landcover from MODIS (Figure 3).

CHOCHO is treated as a product of VOC oxidation with yield αi from VOC i, and is lost by reaction with OH and photolysis

(rate constants kg and Jg respectively). The CHOCHO vertical column density integrated in the horizontal orthogonal to the15

wind (g(x,t)) is then given by

∂g(x,t)
∂t

+u
∂g(x,t)
∂x

=
∑

i

αiki[OH](t)li(x,t)−{kg[OH](t) +Jg(t)}g(x,t) (2)

A similar equation holds for HCHO. Jg is calculated using the Fast-JX radiative transfer model (Wild et al., 2000; Neu et al.,

2007). The yields (αi) are calculated for a 1-day VOC aging time using the box model simulation of Palmer et al. (2006) with

the MCMv3.2 chemical mechanism(Jenkin et al., 1997, 2003), and assuming a high-NOx regime where organic peroxy radical20

products of VOC oxidation react mainly with NO.

We apply the plume model to VOC emissions from five different inventories - RETRO (Maarten van het Bolscher, 2007),

MACCity (Granier et al., 2011), REASv2 (Kurokawa et al., 2013), INTEX-B (Zhang et al., 2009), and the local PRD inventory

from Zheng et al. (2009a).

3 Results and Discussion25

Figure 1 shows the mean 2006-2007 vertical columns of CHOCHO, HCHO, and tropospheric NO2 over China. OMI CHOCHO

columns in the PRD ( 23◦N, 113◦E) peak at 1.0×1015 molecules cm2, the highest in the world on an annual basis (Chan Miller

et al., 2014). HCHO in the PRD is also high but comparable to values in the industrial Szechuan Basin to the northwest and in

the densely populated East China Plain. NO2 is high but less than in the East China Plain. As pointed out previously by Liu
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et al. (2012) and Li et al. (2014), the unusually high CHOCHO concentrations over the PRD can be attributed to high emissions

of aromatic VOCs.

The Zheng et al. (2009a) PRD emissions inventory includes detailed VOC speciation profiles of local sources (Liu et al.,

2008a; Lai et al., 2009), resolving 91 individual VOCs, and adds biogenic VOC emissions from GloBEIS (Zheng et al., 2009c).

The inventory does not contain primary CHOCHO emissions, and primary HCHO emissions are negligibly small.5

Figure 2 shows the VOC emissions from Zheng et al. (2009a) and the corresponding HCHO and CHOCHO production

rates. Aromatic VOCs have higher CHOCHO yields than other precursors, and their emissions are high enough to dominate

CHOCHO production. Paints and solvents are the largest source of aromatics in the inventory, responsible for over 50% of

benzene, toluene and xylene emissions. Atmospheric VOC observations in the PRD are consistent with that solvent/paint

signature (Liu et al., 2008b; Barletta et al., 2008), in contrast to other Chinese cities where VOC emissions are predominantly10

from combustion (Barletta et al., 2005). Acetylene emitted from combustion has a 64% ultimate yield of CHOCHO (Fu et al.,

2008) but its lifetime is too long (about 10 days) to make a major contribution to the local CHOCHO budget.

HCHO is produced with a more consistent yield from different VOCs, as shown in Figure 2. VOCs emitted by vehicles

including alkenes and ≥C4 alkanes play a dominant role in HCHO production, with biogenic isoprene making an additional

seasonal contribution. This explains why OMI HCHO columns in the PRD are comparable to other Chinese urban areas (Figure15

1).

Figure 3 shows mean 2006-2007 OMI columns over the PRD segregated by northeasterly, easterly, and calm ( < 2 m s−1)

wind conditions. The segregation is based on GEOS-5 surface wind data at Shenzhen (23.5◦N, 114◦E). The shape of the

urban plume is consistent with wind direction. 90% of northeasterly conditions are in fall and winter. 50% of calm conditions

are in summer, and easterly conditions are evenly spread over the seasons. These seasonal dependences explain the higher20

HCHO columns under calm conditions, as biogenic VOCs make a larger contribution in summer (Zheng et al., 2010a). On the

other hand, NO2 is lower because of faster photochemical loss. CHOCHO shows much less variability between wind sectors,

consistent with a dominant anthropogenic source and with photochemistry driving both production and loss.

We select observations from the northeasterly sector for comparison to the Zheng et al. (2010b) inventory using the advective-

reactive plume model. Wind under these conditions is relatively steady, with low diurnal variability, and the urban plume is25

transported over flat terrain. The prevailing fall/winter conditions minimize the influence of biogenic VOCs.

Figure 4 shows cross-wind integrals of CHOCHO and HCHO vertical column densities as a function of transport time

calculated from the trajectories using the mean wind field, and initialised upwind of the PRD. A regional background has been

subtracted prior to integration using observations in a sector upwind of the plume source (114-116◦E, 22-23◦N). We ascribe

a 20% relative error to the observations from systematic AMF uncertainties (Vrekoussis et al., 2010) and a spatially-uniform30

error from uncertainty in the background correction (Zhu et al., 2014).

Also shown in Figure 4 are the results from the advective-reactive plume model using the Zheng et al. (2009a) PRD emission

inventory for individual VOCs, with MCMv3.2 yields for HCHO and CHOCHO (Figure 2). The model does not include

biogenic emissions (isoprene, monoterpenes, and methanol), which are relatively weak in fall/winter and would be included in
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the regional background. The anthropogenic emissions are released at t= 6.5 h for CHOCHO and t= 7 h for HCHO, based

on the location of the observed maximum during calm conditions (Figure 3).

Figure 4 shows that the model can replicate the observed concentrations (line densities) CHOCHO and HCHO as a function

of transport time. Specification of OH concentrations and photolysis rates is likely the largest source of uncertainty in the

model. We estimate a 30% uncertainty in OH concentrations, and a 20% uncertainty for photolysis rates, with the latter driven5

by aerosol scattering (Martin et al., 2003). Integrating the plume model results between t= 5 and t= 20 h in Figure 4, we

find good agreement with OMI for both CHOCHO (370 ± 50 kmol modeled vs 350 ± 90 kmol OMI ) and HCHO (3.2 ±
0.6 Mmol modeled vs 2.6 ± 0.7 Mmol OMI), and conclude that the PRD inventory of Zheng et al. (2009a) is consistent with

observations.

We repeated the same plume model calculation with the INTEX-B, REASv2, RETRO, and MACCity emission inventories10

for the PRD. All inventories are for 2006 except RETRO (2000). Figure 5 shows the emissions from each inventory, together

with integrated CHOCHO and HCHO plume enhancements in the PRD integrating the OMI observations and plume model

results in Figure 4 between t= 5 and t= 20 h. With the exception of RETRO, all inventories have similar total VOC emissions

on a per C basis, though they differ in speciation, and they reproduce the observed CHOCHO and HCHO plumes within 40%

for CHOCHO and 55% for HCHO.15

The good agreement between VOC emission inventories and satellite observations of CHOCHO and HCHO is in sharp

disagreement with Liu et al. (2012), who inferred a 10 - 20-fold underestimation of PRD aromatic emissions in the INTEX-

B inventory using SCIAMACHY CHOCHO observations. The same inventory in our plume model underestimates the OMI

CHOCHO concentration by only a factor of 2. Increasing aromatic VOC emissions by a factor of 10 would also overestimate

HCHO by more than a factor of 2.20

Annually averaged SCIAMACHY CHOCHO columns are ∼ 60% higher than OMI in the PRD, and this is not enough to

explain the difference between our study and Liu et al. (2012). Different aromatic CHOCHO yields likely play a larger role

in the discrepancy. Molar yields in Liu et al. (2012) were 25% for benzene, 16% for toluene, and 16% for xylenes, based on

a literature-based average of chamber experiments compiled by Fu et al. (2008). By contrast the MCMv3.2 molar yields used

are 75% for benzene, 70% for toluene, and 36% for xylenes.25

Figure 6 shows the pathways to CHOCHO formation from toluene in MCMv3.2. Approximately half of CHOCHO forma-

tion in MCMv3.2 is produced as a first generation product via a bicyclic intermediate (TLBIPERO). The rest of CHOCHO

production involves intermediate products, implying delays and additional uncertainties.

Studies reporting CHOCHO yields at the lower end of the range reported in Fu et al. (2008) were conducted under very high

NOx conditions, resulting in OH-adduct reactions (pink pathway, Figure 6) that would suppress CHOCHO formation (Nishino30

et al., 2010). The highest yield of 39.0± 10.2% measured by Volkamer et al. (2001) was performed under NOx levels closer

to ambient conditions, however it was later revised to 30.6± 6.0% after CHOCHO measurements from the experiment were

revised downward based on more accurate CHOCHO absorption cross sections (Volkamer et al., 2005). Nishino et al. (2010)

corrected for NO2 reactions in their kinetics analysis to determine a yield of 26.0± 2.2%, in close agreement with Volkamer

et al. (2001). In both studies, CHOCHO production was from first generation production. This is very consistent with the 32%35
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first-generation CHOCHO yield from MCMv3.2 via TLBIPERO (Figure 6). Thus the higher yield of CHOCHO from toluene

in the MCMv3.2 mechanism relative to the Fu et al. (2008) compilation is due to the accounting of later-generation production.

Bloss et al. (2005) experimentally observed CHOCHO production from butenedial (MALDIAL), confirming the existence of

later-generation CHOCHO production from toluene. Other later-generation CHOCHO formation pathways in MCMv3.2 still

need to be experimentally confirmed. However, the combined data on CHOCHO and HCHO from the satellite observations5

do provide additional constraints. If the CHOCHO yield from aromatics were much lower than MCMv3.2, then aromatic

emissions would need to be increased in a way that would be inconsistent with the HCHO data.

The CHOCHO hotspot over the PRD seen by the OMI satellite instrument can thus be explained by a very large industrial

source of aromatic VOCs, consistent with current emission inventories used in atmospheric models. There has been little

confidence in the past in interpreting CHOCHO data from space, in part because of inconsistency with surface observations10

(DiGangi et al., 2012). This issue seems to be resolved with the OMI observations, and we find CHOCHO to be an excellent

tracer of aromatic VOC emissions where these are high. Further work will need to examine other sources of CHOCHO relevant

to interpreting satellite observations, in particular biogenic isoprene. The CHOCHO yields from atmospheric oxidation of

aromatic VOCs also need to be better established in order to improve the quantitative interpretation of CHOCHO data from

space.15
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Figure 1. Annual mean vertical column densities of NO2, HCHO, and CHOCHO for 2006-2007. Values are OMI observations from

Chan Miller et al. (2014) for CHOCHO, González Abad et al. (2015) for HCHO, and Bucsela et al. (2013). for NO2
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CHOCHO and HCHO over one day of aging. VOC emissions are from Zheng et al. (2009a). Yields are computed using the MCMv3.2

chemical mechanism(Jenkin et al., 1997, 2003).
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Figure 3. Mean OMI vertical column densities of CHOCHO, HCHO, and NO2 over the PRD for 2006 to 2007, segregated by wind direction.

Winds vectors at 60-m altitude are from the NASA GEOS-5 assimilated meteorology product. The distribution of urban landcover from the

MODIS type 5 land cover product is shown in grey.
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Figure 4. Mean CHOCHO and HCHO PRD plumes under northeasterly flow conditions. Left: Vertical column densities, overlaid with

surface air (60 m) trajectories for the mean wind field of Figure 3. The trajectories are initialized upwind of the PRD (t = 0), and transport

times in hours along the trajectories are indicated. The grey hatched area indicates the location of maximum emissions as diagnosed by

the peak concentrations for the calm wind conditions in Figure 3 (8× 1014 and 1.25× 1016 molecules cm−2 for CHOCHO and HCHO

respectively). Right: CHOCHO and HCHO cross-wind integrals of vertical column density. The OMI observations are line integrals across

the trajectories in the left panels, and vertical bars are retrieval uncertainties. The stacked contours are results from the 1-D plume model

showing the contributions from individual VOCs as given by the Zheng et al. (2009a) PRD inventory, combined with the CHOCHO and

HCHO yields of Figure 2. VOC emissions in the plume model for CHOCHO and HCHO are centered at transport time t = 6.5 and t = 7.0

hours respectively, based on the plume location during calm wind conditions.
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Figure 5. VOC emissions in the PRD from five different inventories (see text), and corresponding plume amounts of CHOCHO and HCHO

as computed from the plume model discussed in the text and integrated from t = 5 to t = 20 h on the trajectory time grid shown in Figure 4.

Model uncertainty bars are from uncertainties in OH concentrations and photolysis rates (see text). OMI observations integrated on the same

trajectory grid are also shown.
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